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Abstract
We consider a static theory of dislocations with moment stress in an anisotropic
or isotropic elastoplastic material as a T (3) gauge theory. We obtain Yang–
Mills-type field equations which express the force and the moment equilibrium.
Additionally, we discuss several constitutive laws between the dislocation
density and the moment stress. For a straight screw dislocation, we find the
stress field which is modified near the dislocation core due to the appearance of
moment stress. For the first time, we calculate the localized moment stress, the
Nye tensor, the elastoplastic energy and the modified Peach–Koehler force of a
screw dislocation in this framework. Moreover, we discuss the straightforward
analogy between a screw dislocation and a magnetic vortex. The dislocation
theory in solids is also considered as a three-dimensional effective theory of
gravity.

PACS numbers: 61.72.-y, 11.10.-z, 11.15.Ha

1. Introduction

Defects in crystals, e.g. elementary point defects, dislocations and stacking faults, play a
fundamental role in determining the behaviour and properties of crystalline materials. In
principle, point defects make the crystal viscoelastic, whereas dislocations cause plasticity.
After plastic bending or twisting a crystal contains dislocations which give rise to a lattice
curvature. The dislocations can be directly observed by the help of high resolution electron
microscopes. The crystallographic or topological defects not only influence the mechanical,
but also the electrical, magnetic and other properties. All these defects break the symmetry of
the ideal crystal (defect-free crystal), as an analogue of a trivial vacuum, to the real crystal as
a nontrivial vacuum.
1 Present address: Institute for Theoretical Physics, University of Leipzig, Augustusplatz 10, D-04109 Leipzig,
Germany.
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The traditional description of elastic fields produced by dislocations is based on the
classical theory of linear elasticity. This approach works quite well for the strain and stress
fields far from the core. However, the components of these fields are singular at the dislocation
line and this theory, often applied to practical problems, misses the important feature of
plasticity. On the other hand, in conventional plasticity theories no internal length scale enters
the constitutive law and no size effects are predicted.

Therefore, it is quite natural to think of dislocation theory as a theory of elastoplasticity.
In this framework, it is possible to define a characteristic internal length by the help of a new
material constant. In analogy to the theory of elementary particle physics and gravity, we
propose a (static) elastoplastic field theory of dislocations (see also [1]).

A gauge theory of dislocations is formally given in [2–4] but without considering the
moment stress. Moreover, their gauge Lagrangian of dislocation is not the most general one
for an isotropic material because it contains only one material constant and has been chosen in
a very special form to be quadratic in translational gauge field strength. Recently, Malyshev [5]
discussed that the gauge Lagrangian used by Edelen et al does not lead to the correct solution
for an edge dislocation within a linear approximation. Additionally, any correct gauge theory
of dislocations must give the well-established results obtained earlier with the older theory of
dislocations. For instance, Kadić and Edelen [2, 3] and Edelen and Lagoudas [4] find in their
gauge theory of dislocations that the far field stress of a screw dislocation decays exponentially
and the near field decay is found to go with r−1. Obviously, this is an important difference
between the gauge theory of dislocations and classical dislocation theory. Fortunately, about
ten years later Edelen [6] realized that the solutions for a screw and an edge dislocation given
in [2–4] are unphysical.

The aim of this paper is to develop a static theory of dislocations which makes use of
the concepts of field strength, excitation and constitutive functions. Like Maxwell’s field
equations, the theory of dislocations consists of two sets of field equations which are connected
by constitutive laws. This theory is a kind of axiomatic field theory of dislocations similar to
axiomatic Maxwell’s theory, which has recently been given by Hehl et al [7,8]. Additionally,
this dislocation theory is a three-dimensional translation gauge theory [1] which makes use of
the framework of metric affine gauge (MAG) theory given by Hehl et al [9–12]. We discuss
in detail as a physical example the elastoplastic properties of a screw dislocation as a crystal
defect. We show that the solution of the gauge field equations for a screw dislocation in an
infinite medium gives the classical far field and a modified near field.

Moreover, we discuss a straightforward analogy between a screw dislocation and a
magnetic vortex in type-II superconductors [13, 14]. Additionally, we discuss the dislocation
theory as a three-dimensional theory of gravity.

As a formalism we use the calculus of exterior differential forms: for our conventions
see [11, 15–17].

2. Elasticity theory

In classical elasticity theory (see [17]) the material body is identified with a three-dimensional
manifold M3 which is embedded in the three-dimensional Euclidean space R

3. We distinguish
between the material or the final coordinates of M3, a, b, c, . . . = 1, 2, 3, and the (holonomic)
Cartesian coordinates of the reference system (defect-free or ideal reference system) R

3,
i, j, k, . . . = 1, 2, 3. A deformation of R

3 is a mapping ξ : R
3 → M3. This deformation or

distortion 1-form is defined by

ϑa = Ba
i dxi = dξa (2.1)
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and can be identified with the soldering form and the (orthonormal) coframe, respectively.
Here d denotes the three-dimensional exterior derivative. Since

dϑa = ddξa = 0 (2.2)

the elastic distortion (2.1) is compatible or holonomic and the body manifold is simply
connected. The compatible distortion 1-form (2.1) is invariant under ‘rigid’, i.e. constant
translational, transformations:

ξa −→ ξa + τ a (2.3)

where τ a are constant translations.
Using the orthonormal coframe, the volume 3-form is defined by

η := 1

3!
εabc ϑa ∧ ϑb ∧ ϑc = 1

3!
Bεijk dxi ∧ dxj ∧ dxk (2.4)

with B ≡ det(Ba
i) and εabc is the Levi-Civita symbol, ηa := ea�η, ηab := ea�eb�η, and

ηabc := ea�eb�ec�η. Here � denotes the interior product with

ea�ϑb = B i
a Bb

i = δb
a ea = B i

a ∂i (2.5)

and ∧ the exterior product (A ∧ B = A ⊗ B − B ⊗ A). In the following we use the Hodge
duality operation �. For a p-form α, the dual (3 − p)-form (p � 3) with ��α = α is given by

�α = 1

p!
(αa1···ap eap

∧ · · · ∧ ea1)�η. (2.6)

The Cauchy–Green strain tensor G is defined as the metric of the final state:

G = δab ϑa ⊗ ϑb = δabBa
iB

b
j dxi ⊗ dxj = gij dxi ⊗ dxj (2.7)

where δab = diag(+ + +). We can interpret the strain tensor as a kind of effective field which
is formed during the deformation. For an incompressible material, it holds the following
condition (constraint of incompressibility):

det(Ba
i) = √

det(gij ) = 1. (2.8)

Finally, the relative strain tensor (Green–Lagrange strain tensor) E is given by

2E = G − 1 = (gij − δij ) dxi ⊗ dxj . (2.9)

It measures the change of the metric between the undeformed and the deformed state.
Let us now consider the elastic strain Lagrangian. For simplicity we assume a linear

constitutive law. The elastic (anisotropic) Lagrangian is given in terms of the potential (strain)
energy

Lstrain = −Wη. (2.10)

The potential energy is given by

W = 1

2 · 4!

(
C�E ⊗ E

) = 1

2
CijklEij Ekl (2.11)

where the elasticity tensor [17], which describes the elastic properties of the material under
consideration, is defined by

C = Cijkl ∂i ⊗ ∂j ⊗ ∂k ⊗ ∂l Cijkl = Cjikl = Cijlk = Cklij . (2.12)

The elastic force stress is the elastic response quantity pertaining to the distortion and is
defined by

!a := δLstrain

δϑa
. (2.13)
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We speak of force stresses to distinguish them from the so-called moment stress (transmission
of moments). In particular, !a is a R

3-valued odd (or axial) differential form. Here !a is
given by (see also [5, 18])

!a = −σ l
a ηl − Wηa (2.14)

with σ kl := ∂W/∂Ekl = CijklEij and σ l
a = σ klδacB

c
k is the first Piola–Kirchhoff stress

tensor. The second term in !a is due to the variation of the volume 3-form η. In this way,
equation (2.14) corresponds to Eshelby’s elastic stress tensor [19, 20]. It is the stress tensor
for a compressible medium and appears in quite a natural way in this framework.

The elastic strain energy density Estrain is defined as the Hamiltonian

Estrain := −Lstrain = Wη. (2.15)

3. Elastoplasticity—T (3) gauge theory of dislocations

In this section, we discuss the theory of elastoplasticity as a translational gauge theory (T (3)

gauge theory). We postulate a local T (3) invariance for the field ξa:

ξa −→ ξa + τ a(x) (3.1)

where τ a(x) are local translations. If we do it, the invariance of the compatible distortion (2.1)
is lost under the local transformations. In order to kill the invariance violating terms, we
have to introduce a compensating gauge potential 1-form φa , which transforms under the local
transformations in a suitable form:

φa −→ φa − dτ a(x). (3.2)

The field φa couples in a well determined way to the field ξa:

ϑa = dξa + φa (3.3)

such that the distortion 1-form (3.3), which is now incompatible, is invariant under local T (3)

transformations. The coupling in (3.3) between the translational gauge potential φa and the
vector field ξa is a kind of translational covariant derivative acting on ξa (see also [1, 11]).
Accordingly, the incompatible distortion (3.3) can be understood as the (minimal) replacement
of the compatible distortion (2.1) in T (3) gauge theory

dξa −→ dξa + φa. (3.4)

The minimal coupling argument leads to the substitution in the strain energy

W(dξa) −→ W(dξa, φa). (3.5)

A translational gauge theory is thus a theory which corresponds to the gauge invariance with
respect to local displacement transformations.

The reason for plasticity are dislocations and the material gives rise to an elastic response.
The distortion or soldering form (3.3) is now anholonomic due to dϑa 	= 0 and the incompatible
part is caused by defects. The presence of dislocations makes the final crystallographic
coordinate system anholonomic and the body manifold after an incompatible deformation
is not simply connected.

If we interpret the dislocation gauge potential φa as the negative plastic distortion,
we observe

dϑa = −dφa. (3.6)

Finally, the total distortion contains elastic and plastic contributions according to

dξa = ϑa − φa (3.7)

so that the total distortion is compatible and can be written in terms of the mapping function ξa .
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In [1] we have seen that the even (or polar) 1-form φa in equation (3.3) can be interpreted
as the translational part of the generalized affine connection in a Weitzenböck space when the
linear connection ωa

b is globally gauged to zero. Such a space carries torsion, but no curvature.
On the other hand, a dislocation is a translational defect which causes the deviation from

the euclidicity of the crystal, sometimes called the inner geometry. This inner geometry of a
crystal with dislocations can be described as a space with teleparallelism, i.e. a flat space with
torsion [21–24]. In this context, a clear physical interpretation of torsion was discovered for the
first time. The differential geometric notion of torsion was originally introduced by Cartan [25].
In this frame, Cartan had already found that torsion is related to translations. Additionally,
we can identify the vector-valued 0-form ξa as Trautman’s generalized Higgs field [26]. In
contrast to gravity, where the physical meaning of ξa is not completely clarified (see [11]
and the references given there), we cannot use the ‘gauge’ condition ξa = xa or dξa = 0
in our translation gauge theory of dislocations. Consequently, the translational part of the
generalized affine connection cannot be identified with the soldering form. In other words, the
translational gauge theory of dislocations is a theory where the torsion and the translational
part of the generalized affine connection play a physical role.

Now we define the translational field strength (torsion) 2-form T a , in the gauge ωa
b ≡ 0,

as2

T a = dϑa = dφa = 1
2 T a

ij dxi ∧ dxj . (3.8)

One obtains the conventional dislocation density tensor αa
i from T a by means of αa

i =
1
2 ε

jk

i T a
jk . Here, T a is an even (or polar) 2-form with values in R

3. By taking the exterior
derivative one gets the translational Bianchi identity

dT a = 0. (3.9)

Physically, equation (3.9) means that dislocations cannot end inside the body [27]. A
characteristic quantity which expresses a fundamental property of dislocations is the Burgers
vector. The Burgers vector3 is defined by integrating around a closed path γ (Burgers circuit)
encircling a dislocation

ba =
∮

γ

ϑa =
∫

S

T a (3.10)

where S is any smooth surface with boundary γ = ∂S. Thus, the dislocation shows itself
by a closure failure (Burgers vector), i.e. a translational misfit. This means that the closed
parallelogram of the ideal crystal does not close in the dislocated crystal. For a distribution
of dislocations we have to interpret ba in equation (3.10) as the sum of the Burgers vectors
of all dislocations which pierce through the surface S (dislocation density flux through the
surface S).

To complete the field theory of dislocations, we have to define the excitation with respect
to the dislocation density. We make the most general Yang–Mills-type ansatz

Ldisl = − 1
2 T a ∧ Ha. (3.11)

Here the moment stress 1-form Ha is defined by (see [1, 18, 28–31])

Ha := −∂Ldisl

∂T a
(3.12)

as an odd (or axial) R
3-valued form. It is sometimes called couple stress. The moment stress

is the elastoplastic excitation with respect to T a . In other words, at all positions where the
2 In the framework of T (3) gauge theory, the dislocation density is identified with the torsion 2-form or object of
anholonomity in a Weitzenböck space [1].
3 The non-vanishing of the integral (3.10) has topological reasons, see section 7.
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dislocation density is non-vanishing, moment stresses occur. Hence, dislocation theory is a
couple or moment stress theory (see also [32]). The physical meaning of the couple stress
Ha = Hai dxi is: the components H l

l describe twisting moments and the other components
describe bending moments [33, 34].

In order to give concrete expressions for the excitation, we have to specify the constitutive
relation between the field strength T a and the excitation Ha . We choose a linear constitutive
law for an anisotropic material as4

Ha = 1
2

�
(
κaij

bkl Tbkl dxi ∧ dxj
)

(3.13)

where κaij
bkl(x) are constitutive functions that are characteristic for a crystal with dislocations.

These constitutive functions are necessary because the elasticity tensor says nothing about the
behaviour in the core of dislocations (plastic region). They have the symmetries

κaijbkl = κbklaij = −κajibkl = −κaijblk. (3.14)

For an isotropic material the most general constitutive law is given by

Ha = �
3∑

I=1

aI
(I)Ta. (3.15)

Here a1, a2 and a3 are new material constants for a dislocated material. We use the
decomposition of the torsion T a = (1)T a + (2)T a + (3)T a into its SO(3)-irreducible pieces.
These three pieces (I )Ta are (see also [11])

(1)T a := T a − (2)T a − (3)T a (tentor) (3.16)
(2)T a := 1

2 ϑa ∧ (
eb�T b

)
(trator) (3.17)

(3)Ta := 1
3 ea�

(
ϑb ∧ Tb

)
(axitor). (3.18)

The tentor is the torsion corresponding to the Young tableau (2, 1) minus traces. The trator
contains the trace terms of the Young tableau (2, 1) and the axitor corresponds to the Young
tableau (1, 1, 1) (for group-theoretical notations see, e.g., [35, 36]).

The stress 2-form of dislocations is defined by

ha := ∂Ldisl

∂ϑa
= ea�Ldisl +

(
ea�T b

) ∧ Hb = 1

2

[(
ea�T b

) ∧ Hb − (
ea�Hb

)
T b

]
. (3.19)

It is an odd (or axial) vector-valued form. This stress form is called the Maxwell stress 2-form
of dislocations. Here, ha is a kind of interaction stress between dislocations which reflects the
nonlinearity and universality of interactions of the dislocation theory. It is expressed in terms
of dislocation density and moment stress. Thus, ha describes higher order stresses in the core
region. A similar interaction stress of dislocations is discussed in [37, 38].

The definition of the pure dislocation energy as the Hamiltonian is given by

Ecore := −Ldisl = 1
2 T a ∧ Ha. (3.20)

More physically, we can interpret Ecore as the static dislocation core energy density.
In order to take boundary conditions into account we use a so-called null Lagrangian [4]:

Lbg = d(σ bg
a ξa) = σ bg

a ∧ dξa −→ σ bg
a ∧ ϑa. (3.21)

A null Lagrangian does not change the Euler–Lagrange equations in classical elasticity (force
equilibrium) because the background stress σ

bg
a is required to satisfy the relation dσ

bg
a = 0.

After minimal replacement in equation (3.21), the Lagrangian Lbg will make contributions to
the Euler–Lagrange equations of elastoplasticity (see also [6]).
4 A similar constitutive law between moment stress and dislocation density was discussed in [33, 34].
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The variation of the total Lagrangian

L = Ldisl + Lstrain + Lbg (3.22)

with respect to ξa and φa gives the following field equation in the elastoplastic theory of
dislocations in an infinite medium:

δL
δξa

≡ d!a + dha = 0 (force equilibrium) (3.23)

δL
δφa

≡ dHa − ha = !̂a (moment equilibrium) (3.24)

where the effective stress 2-form, !̂a := !a + σ
bg
a , is the driving force stress for the moment

stress in equation (3.24). Let us note that, in the framework of MAG, equation (3.24) is
the (first) gauge field equation and (3.23) is the matter field equation (see [11]). They are
Yang–Mills type field equations of the translational gauge theory.

In order to complete the framework of elastoplastic field theory, we define the elastoplastic
forces as field strength × stress. We introduce the elastic material force density by the help
of the material stress 2-form via

f el
a = (ea�T b) ∧ !b. (3.25)

This force contains the contributions due to the eigenstress of dislocations (Peach–Koehler
force [39]). The pure dislocation force is given by means of the stress 2-form of dislocations
as

f disl
a = (ea�T b) ∧ hb. (3.26)

This force (3.26) characterizes the interaction between dislocations near the dislocation core.

4. What would be a good choice for the moment stress?

In this section we want to discuss different choices for the material constants a1, a2 and a3.
Additionally, we consider the corresponding equations for the moment equilibrium.

For simplicity, we use the weak field approximation (linearization)

ξa = δa
i xi + ua ϑa = (δa

i + βa
i) dxi (4.1)

where ua is the displacement field and βa
i is the linear distortion tensor. We note that the

dislocation self-interaction stress tensor ha is of higher order in the Burgers vector. Thus, we
neglect it. Here we assume a linear asymmetric (Piola–Kirchhoff) force stress [40]

σa = 2µ

(
β(ai) +

ν

1 − 2ν
δaiβ

k
k + c1 β[ai]

)
dxi (4.2)

where µ is the shear modulus and ν is Poisson’s ratio. The constant c1 characterizes the
antisymmetric force stress. Then the equation of the moment equilibrium is

dHa = !̂a (4.3)

with �!̂a = −σ̂a .
The simplest choice is a1 = a2 = a3. It yields the moment stress as

Ha = Hak dxk = a1

2
Taij ε

ij

k dxk = a1 αai dxi (4.4)

with T a
ij = εijkαak . This is what Edelen did [6] in his gauge theory of dislocations.

Accordingly, in this connection we call this choice the ‘Edelen choice’. Eventually, we obtain
the field equation (see, e.g., equation (2.6) in [6])

2βai − ∂i∂
j βaj = 1

a1
σ̂ai (4.5)
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where 2 denotes the Laplace operator and σ̂ai = σai − σ
bg
ai . Now we use the decomposition

βai = β(ai) + β[ai] and

β(ai) = 1

2µ

(
σ(ai) − ν

1 + ν
δaiσ

k
k

)
(4.6)

β[ai] = 1

2µc1
σ[ai]. (4.7)

We find from Edelen’s field equation (4.5) the equations for the symmetric and antisymmetric
force stress as

2σ(ai) − ∂i∂
j σ(aj) +

ν

1 + ν
(∂a∂i − δai2)σ k

k = κ2 σ̂(ai) κ2 = 2µ

a1
(4.8)

2σ[ai] − ∂i∂
j σ[aj ] = c1 κ2 σ̂[ai]. (4.9)

Therefore, the Edelen choice in combination with equation (4.2) yields equations for symmetric
and antisymmetric force stresses. If we require a symmetrical force stress by setting c1 = 0
in equation (4.2) and use the force equilibrium condition ∂iσai = 0 as the ‘gauge condition’,
we obtain from equation (4.8) the field equation

2σ(ai) +
ν

1 + ν
(∂a∂i − δai2)σ k

k = κ2 σ̂(ai). (4.10)

Another choice could be a1 = a2 = 0. Then the axitor:

(3)Taij = 1
3 (Taij + Tija + Tjai) (4.11)

defines the moment stress as

Ha = a3

6
(Taij + Tija + Tjai)ε

ij

k dxk = a3

3
δaiα

k
k dxi. (4.12)

By the help of the axitor, the field equation for the distortion field is given by

2β[ai] − ∂i∂
j β[aj ] + ∂a∂j β[ij ] = 3

2a3
σ̂ai . (4.13)

If we use equation (4.7) and ∂iσai = 0, we find the equation

2σ[ai] = c1 κ̃2 σ̂[ai] κ̃2 = 3µ

a3
(4.14)

and σ̂(ai) = 0. It follows from equation (4.14) that this choice of the moment stress requires a
pure antisymmetric force stress.

Now we discuss the choice a2 = 0 and a3 = − a1
2 . Then the moment stress is given in

terms of the contortion tensor according to

Ha = a1

4
(Taij − Tija − Tjai)ε

ij

k dxk. (4.15)

If we use T a
ij = εijkαak , we find the relation between the moment stress tensor Hai and the

Nye [41] tensor κai = αia − 1
2 δaiα

k
k as

Ha = a1(αai − 1
2 δaiα

k
k) dxi ≡ a1 κia dxi. (4.16)

Hence, the moment stress tensor Hai given in this choice is proportional to the transpose of
the Nye tensor. The field equation by means of this moment stress is given by

2β(ai) − ∂i∂
j β(aj) − ∂a∂j β[ij ] = 1

a1
σ̂ai . (4.17)
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Again, we use equations (4.6) and (4.7) and find the equations for the symmetric and
antisymmetric force stress:

2σ(ai) − ∂i∂
j σ(aj) +

ν

1 + ν
(∂a∂i − δai2)σ k

k = κ2 σ̂(ai) (4.18)

−∂a∂j σ[ij ] = c1 κ2 σ̂[ai]. (4.19)

If we put c1 = 0 (symmetrical force stress) and use ∂iσai = 0, we obtain

2σ(ai) +
ν

1 + ν
(∂a∂i − δai2)σ k

k = κ2 σ̂(ai) (4.20)

which agrees with equation (4.10).
Another interesting choice seems to be5 a2 = −a1 and a3 = − a1

2 . Then we use the
axitor (4.11), the trator

(2)Taij = 1
2 (δaiT

l
lj + δaj T l

il) (4.21)

and the tentor

(1)Taij = Taij − (2)Taij − (3)Taij . (4.22)

Consequently, the moment stress is given by

Ha = a1

4

(
Taij − Tija − Tjai − 2δaiT

l
lj − 2δaj T l

il

)
ε

ij

k dxk. (4.23)

We find the remarkable relationship between the moment stress tensor Hai and the Nye
tensor κai as

Hai = a1
(
αia − 1

2 δaiα
k
k

) ≡ a1κai . (4.24)

Thus, this moment stress tensor Hai is proportional to the Nye tensor. Eventually, we obtain
the field equation for the distortion β(ai) as

a1
{
2β(ai) − (∂i∂

kβ(ak) + ∂a∂kβ(ik)) + δai∂
k∂lβ(kl) + ∂a∂iβ

k
k − δai2βk

k

} = σ̂(ij). (4.25)

Because the lhs of equation (4.25) is equivalent to (inc β)(ij), equation (4.25) is the proper
gauge theoretical formulation of Kröner’s incompatibility equation (see, e.g., equation (II.21)
in [43]). Kröner’s incompatibility tensor is replaced by the effective stress tensor on the rhs of
this equation. Additionally, we rewrite the field equation in terms of the force stress as

2σ(ai) +
1

1 + ν

(
∂a∂i − δai2

)
σ k

k = κ2 σ̂(ai). (4.26)

For σ̂(ai) = 0 this equation is the Beltrami equation. Let us emphasize that the factor 1/(1 + ν)

in equation (4.26) differs from the factor ν/(1 + ν) in equations (4.10) and (4.20). Another
interesting point is that, by means of the ‘Einstein choice’, the force stress is symmetric in a
quite natural way. We do not have to make any assumption with respect to the material constant
c1. Therefore, in order to investigate dislocations with symmetric force stress the ‘Einstein
choice’ of the constants a1, a2, and a3 is favourable and will be used in the following.

5 This choice of parameters is called the ‘Einstein choice’ and can be obtained from the condition that the gauge
Lagrangian Ldisl has to be invariant under local SO(3)-transformations in order to obtain the teleparallel version of
the Hilbert–Einstein Lagrangian in three dimensions [42].
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5. A straight screw dislocation in linear approximation

5.1. Field equation and stress field

For simplicity, we consider a straight screw dislocation in an isotropic and incompressible
medium (B = 1) in linear approximation. For a straight screw dislocation, the Burgers vector
and the dislocation line are parallel. In this case, the problem has cylindrical symmetry.

In the framework of the elastoplastic field theory, we require that the modified stress field
of a screw dislocation has the following properties: (i) the stress field should have no singularity
at r = 0, and (ii) the far field stress ought to be the stress field of a Volterra dislocation σ

bg
ij

which satisfies the condition ∂j σ
bg
ij = 0. Thus the condition (ii) is a boundary condition for

the stress of a dislocation in the field theory of elastoplasticity. We choose the dislocation line
and Burgers vector in the z axis of a Cartesian coordinate system. Then the background stress
is given by the elastic stress of a Volterra screw dislocation [44]:

σ bg
xz = σ bg

zx = −µb

2π

y

r2
σ bg

yz = σ bg
zy = µb

2π

x

r2
(5.1)

where r2 = x2 + y2. Obviously, these stress fields are singular at the dislocation line.
We turn to equation (4.26) and put σ k

k = 0. Then the field equation for the force stress of
a linear screw dislocation is given by the following inhomogeneous Helmholtz equation:

(1 − κ−22)σ(ij) = σ
bg
(ij). (5.2)

Thus, for the elastic strain fields,

(1 − κ−22)Eij = E
bg
ij . (5.3)

If we put σ k
k = 0 in equations (4.10) and (4.20), we also obtain equation (5.2).

Now we seek a cylindrically symmetric (string-like) solution of a screw dislocation. One
finds the solution for the distortion field

βzx = − y

r2

(
b

2π
+ C1rK1(κr)

)
βzy = x

r2

(
b

2π
+ C1rK1(κr)

)
(5.4)

where K1 is the modified Bessel function of the second kind of order one. This solution is
similar to the potential of a magnetic vortex (Abrikosov–Nielsen–Olesen string) for a constant
Higgs field [13, 14]. The constant of integration C1 is determined from the condition that the
distortion βzx and βzy vanish at r = 0 (κr  1 with C1K1(κr) ≈ C1

1
κr

) as

C1 = − bκ

2π
. (5.5)

With (5.5) we obtain for the distortion of a screw dislocation

βz = b

2πr2
(1 − κrK1(κr))(x dy − y dx). (5.6)

The distortion 1-form can be expressed in cylindrical coordinates as

βz = b

2π

(
1 − κrK1(κr)

)
dϕ. (5.7)

The deformation (5.7) around the screw dislocation is a pure shear. The effective Burgers
vector is given by

bz(r) =
∮

γ

βz = b
{
1 − κrK1(κr)

}
. (5.8)
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Figure 1. Effective Burgers vector bz(r)/b (full curve).

This effective Burgers vector bz(r) differs from the constant Burgers vector b in the region
from r = 0 up to r = 6/κ ({1 − κrK1(κr)}|κr=6 = 0.992) because the distortion field is
modified due to the moment stress (see figure 1).

Let us now rewrite the distortion (5.7) as follows:

βz = b

2π
(d{(1 − κrK1(κr))ϕ} − ϕκ2rK0(κr) dr)

≡ duz + φz (5.9)

where ϕ = arctan(y/x). We can interpret the field

φz = −bκ2

2π
ϕrK0(κr) dr (5.10)

as the proper incompatible part (negative plastic distortion) of the distortion due to dφz 	= 0.
It vanishes at r = 0 and r → ∞ (see figure 2). The compatible part of equation (5.9) is

uz = b

2π

(
1 − κrK1(κr)

)
ϕ (5.11)

and is a modified displacement field (see figure 3). This uz is multivalued and has no singularity.
The asymptotic form of uz is the classical displacement function b

2π
ϕ and it vanishes at

r = 0. Moreover, we observe that the classical displacement function is only a kind of
phase-only approximation and is not valid in the dislocation core analogous to the Higgs field
in superconductors or in string theory. Obviously, the displacement field uz plays the role of
a Higgs field in the elastoplastic theory. The line uz = 0 is surrounded by a tube of radius
≈rc, the dislocation core, within which bz(r) is suppressed from its constant value b. From
this point of view, we may identify the length

rc � 6/κ (5.12)

as the dislocation core radius. Outside the core radius the classical elasticity describes
dislocations very well. Thus, the core radius is the inner cut-off radius of classical elasticity
where linear elasticity theory should apply. In this framework, equation (5.11) describes the
‘atomic’ arrangement in the core region (hopefully to a good approximation). The local atomic
configuration inside the core region is fundamentally different from that of the defect-free parts
of the crystal. Therefore, a dislocation is a defect breaking locally the translation invariance
in the core region.
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Figure 2. Incompatible plastic distortion −φz/bκ .
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Figure 3. Displacement field uz/b.

Let us mention that Edelen and Kadić [2, 3] imposed the conditions ξa = xa (no elastic
displacements) and σ

bg
a = 0 (no background stress) in their investigation of dislocation-type

solutions. Accordingly, they used the translational part of the affine connection instead of the
generalized affine connection. That was the reason why they obtained short-reaching solutions
which are ‘unphysical’.

After all these considerations, we may identify the mapping function from the defect-free
to the distorted configuration according to

ξz = z +
b

2π

(
1 − κrK1(κr)

)
ϕ. (5.13)

The corresponding anholonomic coframe of the inner geometry is given by

ϑr = dr ϑϕ = r dϕ ϑz ≡ dz + βz = dz +
b

2π

(
1 − κrK1(κr)

)
dϕ. (5.14)

This coframe has a helical structure and no artificial singularity.
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Figure 4. Force stress of a screw dislocation σzϕ(2π/µbκ) (full curve) and classical 1/r stress
(broken curve).

The force stress of a screw dislocation is given by

σzϕ = σϕz = µb

2πr

(
1 − κrK1(κr)

)
. (5.15)

This eigenstress of a screw dislocation is modified near the dislocation core (up to 6/κ) and
decays like r−1 for large r . It does not possess singularity at r = 0. The eigenstress has a
maximum at r � 1.1κ−1 (see figure 4):

σ max
zϕ � 0.399

µb

2π
κ. (5.16)

Consequently, it is not true that the eigenstress of a screw dislocation decays exponentially
with distance r far from the core.

Let us mention that the modified stress field (5.15) agrees with Eringen’s stress field [45,46]
which is calculated in the framework of nonlocal elasticity. Additionally, it is interesting to
note that the stress field (5.15) is the same as the one obtained by Gutkin and Aifantis [47,48]
in their version of gradient elasticity.

5.2. Torsion, moment stress, energy and force of screw dislocations

Let us now apply the gauge potential of a screw dislocation in order to calculate the torsion,
moment stress, elastoplastic energy and dislocation core energy. Additionally, we compute
the modified Peach–Koehler force between two screw dislocations.

The nonvanishing components of torsion are now calculated by means of the dislocation
potential similar to a magnetic vortex in cylindrical coordinates:

T z = − bκ

2π

∂

∂r

(
rK1(κr)

)
dr ∧ dϕ = bκ2

2π
rK0(κr) dr ∧ dϕ (5.17)

and in Cartesian coordinates as

T z = bκ2

2π
K0(κr) dx ∧ dy (5.18)

where K0 is the modified Bessel function of the second kind of order zero (see figure 5).
Let us note that this elastoplastic field strength (torsion) is analogous to the magnetic field
strength of a magnetic vortex. Of course, the torsion T z fulfils the Bianchi identity dT z = 0.
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Figure 5. Dislocation density T z
xy(2π/bκ2).

Note that T z
rϕ ≈ − bκ2

2π
(ln κr

2 + γ ) for r  κ−1 (near field) and T z
rϕ ≈ bκ2

2
√

2πκr
exp(−κr)

for r � κ−1 (far field). Thus the far field of torsion decreases exponentially with r , with
the characteristic length κ−1. When κ−1 → 0 in (5.17) we obtain the Dirac delta function
as torsion and dislocation density, respectively, so that the ‘classical’ dislocation density is
reverted in this limit. Additionally, we observe that the dislocation density (5.17) agrees with
Eringen’s two-dimensional nonlocal modulus which was obtained by matching the phonon
dispersion curves [45]. Now, we define the plastic penetration depth:

Rc := 1

κ
=

√
a1

2µ
(5.19)

as the region over which the torsion is appreciably different from zero and the torsional flux
is confined within this region. Then Rc measures the proper plastic region where φa 	= 0.
Moreover, the new constant a1 is determined through Rc and κ , respectively. The maximum
of the stress is in the Peierls–Nabarro model [49, 50] given as µ/2π with b = a, where a is
the lattice parameter. If we compare our result (5.16) with this maximum of the stress field, it
is possible to determine the unknown factor κ as

κ−1 � 0.399a. (5.20)

Therefore, by means of (5.20), the typical material constant for a screw dislocation is given by

a1 � 2µ(0.399a)2. (5.21)

Let us mention that Eringen has already obtained an analogous result for κ−1 in his nonlocal
elasticity theory [45]. He pointed out that the choice of κ−1 � 0.399a excellently matches
with experimental atomic dispersion curves. For this value of κ−1 the core radius is given as
rc � 2.4a. The stress field has its maximum µb/2π at r � 0.44a. Gutkin and Aifantis [47,48]
have used another choice of the factor κ as κ−1 � 0.25a so that the core radius is rc � 1.50a.
Thus, the factor κ determines the position and the magnitude of the stress and strain maxima.
Finally, the factor κ should be fitted by comparing predictions of the theory with experimental
results and computer simulations.

The presence of dislocations gives rise to a localized moment stress. This moment stress
1-form is given by the help of equation (4.24) as

Hz = µb

2π
K0(κr) dz Hx = −µb

2π
K0(κr) dx Hy = −µb

2π
K0(κr) dy. (5.22)



An elastoplastic theory of dislocations as a physical field theory with torsion 1997

These moment stresses mean physically twisting moments in the dislocation core region. We
find for the Nye tensor

κzz = bκ2

4π
K0(κr) κxx = −bκ2

4π
K0(κr) κyy = −bκ2

4π
K0(κr). (5.23)

The Nye tensor and the moment stress are appreciably different from zero in the region r � Rc.
Now we are able to calculate the strain and the core energy in this framework. The stored

strain energy of a screw dislocation per unit length is given by

Estrain = µb2

4π

∫ R

0
drr

(
1

r
− κK1(κr)

)2

= µb2

4π

{
ln(r) + 2K0(κr) +

κ2r2

2

(
K1(κr)2 − K0(κr)K2(κr)

)}∣∣∣∣
R

0

(5.24)

where R is the outer cut-off radius. We use the limiting expressions for r → 0:

K0(κr) ≈ −γ − ln
κr

2
K1(κr) ≈ 1

κr
K2(κr) ≈ −1

2
+

2

(κr)2
(5.25)

where γ = 0.577 215 66 . . . is the Euler constant, and for r → ∞:

Kn(κr) ≈
√

π exp(−κr)√
2κr

. (5.26)

The final result for the strain energy is

Estrain = µb2

4π

{
ln

κR

2
+ γ − 1

2

}
. (5.27)

Thus we obtain a strain energy density which is not singular at the dislocation line. The
dislocation core energy per unit length is

Ecore = µb2κ2

4π

∫ ∞

0
drr K0(κr)2

= µb2κ2

8π
r2{K0(κr)2 − K1(κr)2}∣∣∞0

= µb2

8π
(5.28)

which agrees, up to a factor of 2, with the core or misfit energy that is calculated for the screw
dislocation in the Peierls–Nabarro model [44]. Finally, we obtain for the total energy (per unit
length) of a screw dislocation

Escrew = µb2

4π

{
ln

κR

2
+ γ

}
. (5.29)

Due to the fact that the Burgers vector is quantized (see section 7), the core and strain energy
of a dislocation is also quantized.

Now we recover the Peach–Koehler force from equation (3.25) as

f el
a ≡ −f PK

a

= −∂[aβb
j ]σ

l
b εlmn dxj ∧ dxm ∧ dxn. (5.30)

For straight screw dislocations the Peach–Koehler force is given in the framework of linear
dislocation gauge theory as a radial force density

f PK
r = ∂r

(
βzϕσzϕ

)
η. (5.31)
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Figure 6. Peach–Koehler force F PK
r (2π/µb2κ) (full curve) and classical 1/r force (broken curve).

We obtain for the force per unit length acting on one screw dislocation in the stress field due
to the other screw dislocation from equation (5.24)

F PK
r = 2∂rEstrain

= µb2

2πr

(
1 − 2κrK1(κr) + κ2r2K1(κr)2

)
. (5.32)

Here Estrain is the interaction strain energy between the two parallel screw dislocations. We
see that the modified Peach–Koehler force is attractive for screw dislocations of opposite sign,
and repulsive for dislocations of the same sign and is far-reaching. This Peach–Koehler force
is modified near the dislocation core (up to 6κ−1) and decays like r−1 for large r . It does
not possess any singularity at r = 0. The modified Peach–Koehler force has a maximum at
r � 2.42κ−1 (see figure 6).

6. Dislocation theory as three-dimensional gravity

In the preceding section, we have described the dislocation theory as a Weitzenböck space
(teleparallelism) with nontrivial torsion T a . An alternative description of dislocation theory is
to consider the body manifold as a Riemann space with Christoffel symbols as a connection and
nontrivial Riemannian curvature. In the last case the dislocation theory is equivalent to three-
dimensional gravity [42]. In this picture, the Cauchy–Green strain tensor is the gravitational
field which describes the deformation of the manifold from the undeformed one.

The Levi-Civita connection (Christoffel symbol) ω̃ab, corresponding to the metric
(Cauchy–Green tensor) G = δab ϑa ⊗ ϑb, can be derived from the contortion 1-form τab

by means of the teleparallel condition:

ω̃ab − τab = ωab ≡ 0 �⇒ ω̃ab = τab. (6.1)

Then the Levi-Civita connection is given by

ω̃ab = 1
2 (−Tabi − Tbia + Tiab) dxi. (6.2)

The corresponding Riemannian curvature 2-form is

R̃ab = 1
2 R̃abij dxi ∧ dxj = dω̃ab + ω̃ac ∧ ω̃c

b. (6.3)
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Eventually, we get the corresponding field equation by using the three-dimensional Hilbert–
Einstein Lagrangian:

LHE = − 1

2<
R̃ab ∧ ηab (6.4)

instead of the teleparallel Lagrangian Ldisl in the ‘Einstein choice’ of the three parameters
(a1 = 1, a2 = −1, a3 = − 1

2 ) as shown in [1, 5] by help of the following remarkable identity6

(see, e.g., [42]):

−Rab ∧ ηab + R̃ab ∧ ηab − T a ∧ �
((1)

Ta − (2)Ta − 1
2

(3)Ta

) ≡ 2d
(
ϑa ∧ �Ta

)
. (6.5)

Consequently, in a Weitzenböck space with vanishing Riemann–Cartan curvature, i.e. Rab = 0,
the Lagrangian Ldisl is, up to a boundary term, equivalent to the Hilbert–Einstein Lagrangian
LHE in three dimensions7. After variation with respect to ϑa , one recovers an Einstein-type
field equation

G̃a ≡ 1
2 ηabc R̃bc = < !̂a. (6.6)

Here < is the coupling constant of ‘dislocation gravity’.
Let us analyse the Riemannian geometry caused by a screw dislocation by using the

torsion (5.18) and the elastoplastic stress tensor. The nonvanishing components of the Einstein
tensor are

G̃x = − bκ3

4πr
K1(κr)y dx ∧ dy,

G̃y = bκ3

4πr
K1(κr)x dx ∧ dy

G̃z = − bκ3

4πr
K1(κr)

(
x dx ∧ dz + y dy ∧ dz

)
.

(6.7)

The source of the Einstein tensor is the following effective stress tensor:

!̂x = −µbκ

2πr
K1(κr)y dx ∧ dy

!̂y = µbκ

2πr
K1(κr)x dx ∧ dy

!̂z = −µbκ

2πr
K1(κr)

(
x dx ∧ dz + y dy ∧ dz

)
(6.8)

which is the eigenstress of a screw dislocation without the ‘classical’ displacement field (Higgs
field) uz = b

2π
ϕ. We see that the field uz gives no contribution to the Einstein tensor (6.7) and

to the stress tensor (6.8). All this looks like general relativity where we are internal observers.
One may imagine that an external observer is able to deform our universe from outside, but
this deformation would be compatible and therefore not felt by us as internal observers [51].
Is, perhaps, this observation a hint why we may use the Cartan or affine connection instead
of the generalized affine connection in gravity? However, the ‘Higgs field’ ua should play a
physical role in gravity, too, e.g. as a nontrivial vacuum.

Obviously, the dislocation acts as the source of an incompatible ‘gravitational’ distortion
field and is its own source. Additionally, we can say that a screw dislocation is a topological
string with cylindrical symmetry in three-dimensional gravity. Perhaps dislocations in crystals
provide a better experimental field for testing gravity models with cosmic strings (see also [52]).
Let us note that the interesting analogy between vortices in superfluids and spinning cosmic
strings is discussed in [53].
6 Note that a2 = −2 in [1] is unfortunately a misprint.
7 The gauge theoretical description of dislocation theory based on the Lagrangian LHE in combination with an elastic
Lagrangian is also proposed by Malyshev [5] and is equivalent to the teleparallel formulation in this paper.
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Now we determine the ‘gravitational’ constant < for a screw dislocation. After substituting
of (6.7) and (6.8) in (6.6), we observe

< = 1

a1
. (6.9)

We are discussing the material tungsten (W) because it is nearly isotropic. With the lattice
constant, a = 3.16 × 10−10 m, and the shear modulus, µ = 1.61 × 1011 N m−2, we obtain
with (5.21)

< � 1.95 × 108 N−1. (6.10)

Remarkable, the ‘gravitational’ constant in dislocation theory is much bigger than the Einstein
gravitational constant <E = 2.08 × 10−43 N−1. But this is not surprising because the Planck
length, aPl = 1.62 ×10−35 m, is much smaller than the lattice constant of the crystal. Because
the coupling constant is quadratic in the specific length, the difference between the gravitational
constant in dislocation theory and Einstein gravity should be a factor of 1050—and this is what
we get.

From the quantum mechanical point of view, a crystal has a lattice structure. We are able to
measure the lattice constants by means of x-ray diffraction or transmission electron microscopy
and we observe that a crystal is not a continuum. Nevertheless, if the energy of the particles is so
small that the lattice structure cannot be resolved, then the differential geometric specification
provides an effective description of the continuized crystal (see also [54]). A continuized crystal
is the result of a limiting process in which the lattice parameter is more and more reduced such
that the mass density and the crystallographic directions remain unchanged [55]. Therefore,
the dislocation theory as three-dimensional gravity by means of the Einstein field equations is
a low energy description, like the Einstein theory of gravity. But in gravity we do not have a
‘microscope’ in order to observe the typical length and lattice parameter, respectively.

7. Some topological remarks about dislocations in crystals

Let us now discuss some topological properties of dislocations in crystals (see [56–58]). Due to
the Burgers circuit (3.10), a dislocation is a topological line defect and the body manifold M3

is not simply connected (that is, if M3 contains incontractible loops). In general, line defects,
e.g. dislocation, vortices and cosmic strings, are described by the first homotopy group π1.

The three-dimensional crystal is described by the discrete translations in three dimensions
(Bravais lattice vectors). The isotropy group of the crystal is the group of discrete translations
Z

3. If we identify points differing by a primitive lattice vector, we see that the one-dimensional
translation group T (1) is mapped to the group U(1) and the one-dimensional sphere S1,
respectively. After this periodic boundary condition the corresponding space is identified with
the three-dimensional torus T 3 ∼= T (3)/Z

3 = S1 × S1 × S1 and the continuous translation
group is broken to the discrete translation group: T (3) → Z

3. The type of defect depends
on the topology of T 3. The first fundamental group of the three-dimensional torus as the
coset space is π1(T 3) = Z

3. Thus, from the topological point of view, the dislocations are
characterized by a Bravais lattice vector b = ua1 + va2 + wa3, called the Burgers vector.
Here (a1, a2, a3) are the primitive lattice vectors and (u, v, w) ∈ π1(T 3). Thus the Burgers
vector is quantized. Due to the non-vanishing of the first homotopy group π1(T 3) = Z

3, the
underlying fibre bundle is topologically nontrivial.

We have seen that the dislocations are topological defects similar to vortices, where the
magnetic flux is quantized. In general, topological defects are known as topological charges
in gauge theories. The quantized abelian topological charge of dislocations is the Burgers
vector that is the torsional flux. Hence, a dislocation is a kind of a torsion vortex in crystals.



An elastoplastic theory of dislocations as a physical field theory with torsion 2001

Dislocations have (pseudo)-particle-like properties. For example, they may annihilate with
their ‘anti-particles’, i.e. dislocations of opposite Burgers vector. Let us remark that Seeger [59]
has already considered dislocations as solitons in crystals, namely as global solitons or kinks
which are a solution of the Enneper or sine-Gordon equation.

Some topological remarks about static dislocations have been discussed by Gairola [60].
But he has not clarified the nature of the gauge field, which we have identified with the
dislocation gauge potential in the framework of translation gauge theory [1].

Dislocations in crystals can be described by means of the Burgers vector and the direction
of the dislocation line s. One usually distinguishes between screw (b‖s) and edge (b ⊥ s)

dislocations. But from the topological point of view both these types are equivalent.

8. Conclusions

We have proposed a static theory of dislocations with moment stress which represents the
specific response to dislocation distributions in an anisotropic or isotropic elastoplastic material
as a three-dimensional translation gauge theory. We have explicitly seen that a physical field
theory of dislocations has to contain the notion of moment stress. Hence, dislocation theory
is a couple or moment stress theory. In this theory of dislocations the force stress vanishes,
except at the positions of the dislocations, where it gives rise to a localized moment stress.
Obviously, the size of this moment stress cannot be calculated from classical elasticity theory.
Thus, a field theory of dislocations without moment stress is obsolete.

In our theory we have used the framework of MAG and the analogy between the dislocation
theory and Maxwell’s theory. In order to obtain a field theory, we have used the concepts of
field strength, excitation and constitutive law analogous to the electromagnetic field theory.
All elastoplastic field quantities can be described by R

3-valued exterior differential forms. The
elastoplastic field strength is an even (or polar) differential form and the moment and the force
stress are odd (or axial) forms. We have shown that the elastoplastic excitation with respect
to dislocation density is necessary for a realistic physical dislocation theory. As a constitutive
relation between dislocation density and moment stress we have discussed linear laws for
isotropic and anisotropic materials. For isotropic materials we used the teleparallel Lagrangian,
which is equivalent to the Hilbert–Einstein Lagrangian, as the dislocation gauge Lagrangian.
In this case, the constitutive relation between the dislocation density and the moment stress
is compatible with the constitutive law between the strain and the symmetrical force stress.
Moreover, we have proven that the moment stress in the ‘Einstein choice’ is proportional to
the Nye tensor. A new material constant a1 enters in the constitutive relation between the
dislocation density and the moment stress. It defines a new internal length scale κ−1.

Additionally, we have demonstrated how to fit the excitations into the Maxwell type
field equations, in contrast to [61] who claimed that there are no analogues to the second
pair of Maxwell equations in dislocation theory. A static dislocation theory is analogous to the
magnetostatics. We have used the analogy between fields which have the same field theoretical
meaning (differential forms of the same degree). Therefore, from the field theoretical point of
view, this analogy is more straightforward than the analogy used by Kröner [62]. Moreover,
we have pointed out the analogy between a magnetic (Abrikosov–Nielsen–Olesen) vortex and
a screw dislocation in a crystal. Consequently, a dislocation is a translational vortex or string.
A review of the corresponding magnetic and dislocation quantities is given in table 1.

Additionally, we discussed the dislocation theory as a gravity theory in three dimensions.
We pointed out some similarities between dislocations and cosmic strings.

In the classical theory of dislocations one usually claims that the dislocation core cannot
be described in linear approximation because of the singularity of the stress field at r = 0 and
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Table 1. The correspondence between a magnetic vortex and a screw dislocation.

B—magnetic field strength T a—dislocation density
H—magnetic excitation Ha—moment stress
A—magnetic potential ϑa—incompatible distortion
f —Higgs field ξa—mapping function
B = dA, A = A′ + df T a = dϑa , ϑa = φa + dξa

Coulomb gauge: Coulomb gauge:
d�A = 0 d�ϑa = 0
Magnetic flux (n-winding number): Burgers vector:
A0 = nπh̄c/e0 ba must be a lattice vector∮

γ
A = A0

∮
γ

ϑa = ba

j—electric current !T
a = !̂a + ha—force stress

Gauge potential of a magnetic string (n = 1): Distortion of a screw dislocation:
A = A0/(2π)(1 − λrK1(λr))dϕ βz = b/(2π)(1 − κrK1(κr))dϕ

Field strength of a magnetic string (n = 1): Torsion of a screw dislocation:
B = A0λ2/(2π) rK0(λr) dr ∧ dϕ T z = bκ2/(2π) rK0(κr)dr ∧ dϕ

Magnetic field closed: Dislocation density closed:
dB = 0 dT a = 0
(Static) Oersted–Ampère law: Moment stress equilibrium:
dH = j dHa = !T

a

Continuity equation: Force stress equilibrium:
d j = 0 d!T

a = 0
Constitutive law: Constitutive law:
H = H(B) Ha = Ha(T b)

Magnetic energy density: Energy density of dislocations:
Eem = 1

2 B ∧ H Edisl = 1
2 T a ∧ Ha

that one has to use the nonlinear elasticity near the core. The reason for this assumption is that
the classical theory of dislocations does not use a constitutive law between dislocation density
as the elastoplastic field strength and the moment stress as the elastoplastic excitation in a field
theoretical way. In the elastoplastic field theory, it is possible to describe the core region even
in linear approximation very well.

Two characteristic distances appear naturally in this approach: the dislocation core radius
rc � 6κ−1 and the plastic penetration depth Rc � κ−1 which may be viewed as the radius of
the region over which the dislocation density (torsion), the Nye tensor and the moment stress
are appreciably different from zero. We found in this theory of dislocations with moment stress
that the near stress field for a screw dislocation is modified up to rc � 6κ−1 (core radius) and
the far field is in agreement with the classical stress field. Thus the translation gauge theory
of dislocations removes the artificial singularity at the core of classical dislocation theory. It
gives the correct results of the elasticity theory for a screw dislocation and the modification
in the core region due to the moment stress. We have discussed the choice of the coupling
constant between the dislocation density and the moment stress as a1 � 2µ(0.399a)2 for a
screw dislocation. Accordingly, we found that the Burgers vector is also modified in the region
from 0 � r � 2.4a. Moreover, we calculated the dislocation density, the moment stress and
the elastoplastic energy of a screw dislocation. We have shown that this translational gauge
model is useful in determining the width of a screw dislocation and in estimating the core
energy of a screw dislocation similar to the Peierls–Nabarro model.

Last, but by no means least, we have seen that the translational gauge theory of dislocations
is a field theory where the torsion and the translational part of the generalized affine connection
play a physical role.
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[29] Trzȩsowski A 1993 Rep. Math. Phys. 32 71
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(Waterloo, Ontario: University of Waterloo Press) pp 253–327
[60] Gairola B K D 1993 Gauge theory of dislocations Continuum Models and Discrete Systems: Proc. 7th Int.

Symp. (Paderborn, Germany) ed K-H Anthony and H-J Wagner (Aedermannsdorf, CH: Trans. Techn. Publ.)
pp 579-90

[61] Golebiewska-Lasota A A 1979 Int. J. Eng. Sci. 17 329
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